
To appear in Proceedings, International Symposium on Requirements Engineering, York, England, March 26-27, 1995 1

Consistency Checking of SCR-Style Requirements Speci�cations

Constance Heitmeyer and Bruce Labaw� Daniel Kiskisy

Abstract

This paper describes a class of formal analysis
called consistency checking that mechanically checks
requirements speci�cations, expressed in the SCR tab-
ular notation, for application-independent properties.
Properties include domain coverage, type correctness,
and determinism. As background, the SCR notation
for specifying requirements is reviewed. A formal re-
quirements model describing the meaning of the SCR
notation is summarized, and consistency checks de-
rived from the formal model are described. The re-
sults of experiments to evaluate the utility of auto-
mated consistency checking are presented. Where con-
sistency checking of requirements �ts in the software
development process is discussed.

1 Introduction

A recent study of industrial application of formal
methods concludes that formal methods, including
those for specifying and analyzing requirements, are
\beginning to be used seriously and successfully by
industry: : : to develop systems of signi�cant scale and
importance" [5]. Included in the study is the Soft-
ware Cost Reduction (SCR) method for specifying re-
quirements. Introduced more than a decade ago to
describe the functional requirements of software un-
ambiguously and concisely [13, 14], the SCR method
has been extended recently to describe system, rather
than simply software, requirements and to incorpo-
rate techniques for representing nonfunctional require-
ments, such as timing and precision [17, 21, 22].

Designed originally for use by engineers, the SCR
method has been successfully applied to a variety of
practical systems. These include avionic systems, such
as the A-7 Operational Flight Program (OFP) [13, 1];
a submarine communications system [12]; and safety-
critical components of two nuclear power plants, the
Darlington plant in Canada [22] and a second plant in
Belgium [4]. Recently, a consortium of aerospace com-
panies has developed a version of the SCR method,
called CoRE, to capture and document the require-
ments of avionics and space applications [7, 8].

While the above applications of SCR rely on man-
ual techniques, e�ective use of the method in indus-
trial settings will require powerful and robust tool
support. As observed in the formal methods study
[5], tool support for formal methods, though currently
weak and impoverished, is \necessary for the full in-
dustrialization process: : : and needs to be an integral
part of a broader software development tool suite."

�Code 5546, Naval Research Lab, Wash., DC 20375.
y3060 Whisperwood Drive, Ann Arbor, MI 48105.

Further, one of the original developers of the SCR
method and a leader in the certi�cation of the Dar-
lington software cites the \need for tool support to
make the process practical" [18].

An important question is what form tool support
should take. To answer this question, our group is
developing a prototype toolset for constructing and
analyzing SCR-style requirements speci�cations. The
toolset includes a speci�cation editor for creating and
editing formal requirements speci�cations, a simula-
tor for symbolically executing the speci�cations, and
formal analysis tools for testing the speci�cations for
selected properties.

Three classes of formal analysis can be applied to
requirements speci�cations. One class called consis-
tency checking, the subject of this paper, tests that
requirements speci�cations satisfy a formal require-
ments model. The requirements model describes the
set of properties that all requirements speci�cations
must satisfy. Hence, the properties tested by the con-
sistency checker are independent of a particular appli-
cation.

The other two classes of formal analysis require the
successful completion of the �rst: both depend on a
consistent (and complete) requirements speci�cation.
The second class checks the requirements speci�cation
for application properties. These properties include
safety properties, which prevent unplanned events that
result in death, injury, illness, or damage to property;
timing properties, which require the system to produce
results within speci�ed time intervals (see, e.g., [9]);
and security properties, which prevent the unautho-
rized disclosure, modi�cation, and withholding of sen-
sitive information (see, e.g., [15]). Given a system re-
quirements speci�cation and another system descrip-
tion (such as a software design or source code), the
third class of formal analysis checks that the system
description satis�es the requirements speci�cation.

The properties that consistency checking tests are
usually quite simple. For example, given a require-
ments speci�cation that includes a total function F ,
the consistency checker tests that F is indeed total
(i.e., de�ned everywhere in F 's domain). While sim-
ple, the number of times such properties need to be
checked in practical requirements speci�cations can
become very large, and thus reviewers must spend
considerable time and e�ort verifying that the spec-
i�cations have the properties. In fact, in the certi�-
cation of the Darlington plant, Parnas has observed
that the \reviewers spent too much of their time and
energy checking for simple, application-independent
properties" (such as the ones we describe in this pa-
per) which distracted them from the \more di�cult,

safety-relevant issues" [18]. Tools that automatically
perform such checks can save reviewers considerable
time and e�ort, liberating them to do more creative
work.

An industrial-strength formal method should have
a formal (that is, mathematical) foundation and
should be usable by engineers, scalable, and cost-
e�ective. Automated consistency checking as de-
scribed in this paper is an important step in develop-
ing such a method for requirements speci�cation. It
has a formal foundation, namely, our formal require-
ments model [10]. It is easy to use: after developing
a requirements speci�cation in the SCR notation, the
engineer invokes the consistency checker to �nd incon-
sistencies automatically. It scales up to handle prac-
tical applications: in two experiments, our automated
consistency checker found signi�cant errors in the re-
quirements speci�cation of a medium-size Navy ap-
plication. These errors were detected even though the
speci�cation had previously undergone comprehensive
checks by two independent review teams. These re-
sults and the high cost of the Darlington certi�cation
e�ort, where such checks were done by hand, suggest
that automated consistency checking is cost-e�ective.
Finally, automated consistency checking is an impor-
tant �rst step in formal analysis of requirements spec-
i�cations, since, as indicated above, other classes of
formal analysis require a consistent speci�cation.

Although earlier requirements models, in partic-
ular, Faulk's automaton model [6], Parnas' Four-
Variable Model [17], and the model underlying van
Schouwen's speci�cation [21, 22], de�ne some aspects
of the SCR notation, these models are too abstract
to provide a formal basis for our tools. To provide a
precise and detailed semantics for the SCR notation,
our requirements model represents the system to be
built as a state automaton and describes the moni-
tored and controlled variables, conditions, events, and
other constructs that make up an SCR speci�cation
in terms of that automaton. This automaton model,
an extension of Faulk's and a special case of the other
two models, provides the formal basis for our auto-
mated consistency checker as well as our other tools,
in particular, the speci�cation editor, the simulator,
and a veri�er that checks the speci�cations for appli-
cation properties (the second class of formal analysis
described above).

After reviewing the SCR method for specifying re-
quirements, this paper introduces our formal require-
ments model, describes consistency checks based on
the model, presents the results of experiments we con-
ducted to determine the utility of automated consis-
tency checking, and discusses where consistency check-
ing �ts in the software development process. The con-
tributions of this paper are its introduction and for-
mal de�nition of a class of analysis, namely, consis-
tency checking, for detecting application-independent
errors in system and software requirements speci�ca-
tions and the evidence it provides that software tools
for automated consistency checking are useful and
cost-e�ective.

Environment Environment

Monitored
Variables

Controlled
Variables

System

Software

Input
Data
Items

REQ and NAT

SOFT

Input
Devices

Output
Devices

Output
Data
Items

IN OUT

Figure 1: Four Variable Model.

2 Background: SCR Method

The purpose of a requirements document is to de-
scribe all acceptable system implementations [12]. To
minimize implementation bias, a requirements docu-
ment should specify only the externally visible behav-
ior required of the system. To achieve this, Parnas has
introduced the Four Variable Model, a standardarized
model of embedded system behavior that describes the
required system functions, timing, and precision [17].
This section reviews the constructs and tabular nota-
tion in SCR requirements speci�cations in terms of the
Four Variable Model. Because our initial requirements
model emphasizes the system's functions, the discus-
sion focuses on aspects of the Four Variable Model
that describe functional behavior.

SCR Constructs. The Four Variable Model, illus-
trated in Figure 1, represents requirements as a set of
mathematical relations on four sets of variables called
monitored, controlled, input, and output. A mon-
itored variable represents an environmental quantity
that inuences system behavior, a controlled variable
an environmental quantity the system controls. A
black box speci�cation of required behavior is given
as two relations (REQ and NAT) from the monitored
quantities to the controlled quantities (not inputs to
outputs). NAT de�nes the set of possible values; it
captures any constraints on behavior, such as those
imposed by physical laws. REQ de�nes the additional
constraints imposed by the system to be built. It de-
scribes the required system behavior by de�ning the
relation the system must maintain between the moni-
tored and the controlled quantities.

Inputs and outputs are treated as resources. In-
puts are resources available to the system to compute
the monitored quantities. The relation IN de�nes the
mapping from the monitored quantities to the inputs.
Similarly, the relation OUT de�nes the mapping from
the outputs to the controlled quantities. The use of
monitored and controlled quantities to de�ne required
behavior, rather than inputs and outputs, keeps the
speci�cation in the problem domain and allows a sim-
pler speci�cation. Below, we refer to monitored vari-
ables and inputs as input variables, controlled vari-
ables and outputs as output variables.

Four more constructs, all introduced in the A-7 re-
quirements document [13], are useful for specifying
systems using the Four Variable Model. These are
modes, terms, conditions, and events. A mode class is
a state machine, whose states are called system modes
(or simply modes) and whose transitions are triggered
by events. Complex systems are de�ned by more than
one mode class, operating in parallel. A term is any
function of input variables, modes, or other terms. A

2

Safety
Injection

Safety Injection System

Software
Input

Devices
Output
Devices

Sensor1
Safety

Injection
Device

WaterPres

Reset
Block Sensor2

Sensor3

Terms
Overridden{ .

.

.

Mode
Class

Pressure

TooLow

High

Permitted

Input
Devices

Output
Devices

Constants
Low
Permit
 .{ .
.

Env. Env.

Figure 2: Requirements Spec. for Safety Injection.

condition is a predicate about the system state. An
event occurs when any system entity (that is, an input
or output variable, mode, or term) changes value. A
special event, called an input event, occurs when an
input variable changes value. Another special event,
called a conditioned event, occurs if an event occurs
when a speci�ed condition is true.

To illustrate the SCR constructs, we consider a sim-
pli�ed version of the control system for safety injec-
tion described in [4]. The system uses three sensors to
monitor water pressure and adds coolant to the reac-
tor core when the pressure falls below some threshold.
The system operator blocks safety injection by turn-
ing on a \Block" switch and resets the system after
blockage by turning on a \Reset" switch. Figure 2
shows how SCR constructs could be used to specify
the requirements of the control system. Water pres-
sure and the \Block" and \Reset" switches are repre-
sented as monitored variables, WaterPres, Block, and
Reset; safety injection as a controlled variable, Safety
Injection; each sensor as an input; and the hardware
interface between the control system software and the
safety injection system as an output.1

A mode class Pressure and a term Overridden
help make the speci�cation concise. Pressure con-
tains three modes, TooLow, Permitted, and High. A
drop in water pressure below a constant Low causes
the system to enter mode TooLow; an increase in pres-
sure above a larger constant Permit causes the system
to enter mode High. The term Overridden is true if
safety injection is blocked, false otherwise. An exam-
ple of a condition in the speci�cation is \WaterPres
< Low". Two examples of events are the input event
@T(Block=On) (the operator turns Block from Off to
On) and the conditioned event @T(Block=On) WHEN
WaterPres < Low (the operator turns Block to On
when water pressure is below Low).

SCR Notation. The A-7 requirements document
[13] introduced a special tabular notation for writing
speci�cations. Because tables are easy to understand,
the tabular notation facilitates industrial application
of the SCR method. Among the tables in SCR speci-
�cations are condition tables, event tables, and mode
transition tables. Each table de�nes a function.2 A
condition table describes an output variable or a term
as a function of a mode and a condition, an event ta-
ble describes either as a function of a mode and an
event. A mode transition table describes a mode as a
function of another mode and an event.

1The example omits the SCR brackets, e.g., *mode*, etc.
2Although SCR speci�cations can be nondeterministic, our

initial model is restricted to deterministic systems.

Old Mode Event New Mode

TooLow @T(WaterPres � Low) Permitted

Permitted @T(WaterPres � Permit) High

Permitted @T(WaterPres < Low) TooLow

High @T(WaterPres < Permit) Permitted

Table 1: Mode Transition Table for Pressure.

Mode Events

High False @T(Inmode)

TooLow or @T(Block=On) @T(Inmode) OR
Permitted WHEN Reset=Off @T(Reset=On)

Overridden True False

Table 2: Event Table for Overridden.

While condition tables de�ne total functions, event
tables and mode transition tables may de�ne partial
functions, because some events cannot occur when
certain conditions are true. For example, in the
above system, the event, @T(Pressure=High) WHEN
Pressure=TooLow, cannot occur, because starting
from TooLow, the system can only enter Permitted
when a state transition occurs.

Tables 1{3 are part of REQ, the system require-
ments speci�cation for the above control system. Ta-
ble 1 is a mode transition table describing the mode
class Pressure as a function of the current mode
and the monitored variable WaterPres. Table 2 is
an event table describing the term Overridden as a
function of Pressure, Block, and Reset. Table 3
is a condition table describing the controlled vari-
able Safety Injection as a function of Pressure and
Overridden. Table 3 states, \If Pressure is High or
Permitted or if Pressure is TooLow and Overridden
is true, then Safety Injection is Off; if Pressure
is TooLow and Overridden is false, then Safety
Injection is On." The notation \@T(Inmode)" in a
row of an event table describes system entry into the
mode in that row; for example, \@T(Inmode)" in the
�rst row of Table 2 means, \If the system enters High,
then Overridden becomes false."

3 Formal Requirements Model

Our requirements model, a state automaton model,
de�nes sets of modes, entity names, values, and
types. It also introduces a function TY, which maps
an entity to its legal values; in the sample sys-
tem, TY(Overridden)=ftrue, falseg, TY(Sensor1)=
[14; 2000], TY(Safety Injection)=fOn, Offg, and
TY(Pressure)=fHigh, TooLow, Permittedg. The
model de�nes system state in terms of the entities,
a condition as a predicate on the system state, and an
input event as a change in an input variable that trig-
gers a new system state. It then shows how a set of
functions, called table functions, can be derived from
the SCR tables. The table functions are used to de�ne
the system transform T , a special case of REQ which
maps the current system state and an input event to a
new system state. To provide a formal foundation for

3

Mode Conditions

High or Permitted True False

TooLow Overridden NOT Overridden

Safety Injection Off On

Table 3: Condition Table for Safety Injection.

consistency checking, we present below excerpts from
our requirements model [10].

System State. We assume the existence of the fol-
lowing sets.

� MS is the union of N pairwise disjoint sets, called

mode classes. Each member of a mode class is called

a mode.

� TS is a union of data types, where each type is a

nonempty set of values.

� VS is a set of entity values with VS =MS [TS.

� RF is a set of entity names r. RF is partitioned into

four subsets: MR, the set of mode class names; IR,
the set of input variable names; GR, the set of term

names; and OR, the set of output variable names. For

all r 2 RF, TY(r) � VS is the type of entity r.

A system state s is a function that maps each entity
name r in RF to a value. More precisely, for all r 2
RF: s(r) = v, where v 2 TY(r). Thus, by assumption,
in any state s, the system is in exactly one mode from
each mode class, and each entity has a unique value.

Conditions. Conditions are de�ned on the values of
entities in RF. A simple condition c is either true,
false, or a logical statement c = r � v, where r 2 RF
is an entity name, � 2 f=; 6=; >;<;�;�g is a rela-
tional operator, and v 2 TY(r) is a constant value.
A condition c is a logical statement composed of sim-
ple conditions connected in the standard way by the
logical connectives ^, _, and NOT.

Software System. A software system � is a 4-tuple,
� = (Em; S; s0; T); where

� Em is a set of input events. A primitive event is
denoted as @T(r = v), where r is an entity in RF

and v 2 TY(r). An input event is a primitive event

@T(r = v), where r 2 IR is an input variable.

� S is the set of possible system states.

� s0 is a special state called the initial state.

� T is the system transform, i.e., a function from Em�S

into S.

Events. In addition to denoting primitive events, the
\@T" notation also denotes basic events and condi-
tioned events. A basic event e is denoted as e =
@T(c), where c is any simple condition. A simple con-
ditioned event e is denoted as e = @T(c) WHEN d;
where @T(c) is a basic event and d is a simple condi-
tion or a conjunction of simple conditions. Any basic

event e = @T(c) can be expressed as the simple con-
ditioned event e = @T(c) WHEN true. A conditioned
event e is composed of simple conditioned events con-
nected by the logical connectors ^ and _.

We de�ne the logical statement represented by
a simple conditioned event as @T(c) WHEN d =
NOT c ^ c0 ^ d, where the unprimed and primed ver-
sions of condition c denote c in di�erent states. We
de�ne c0, where c = r � v, as c0 = (r � v)0 = r0 � v.
Based on these de�nitions and the standard predicate
calculus, any conditioned event can be expressed as
a logical statement. Where a condition is evaluated
in a single state, an event is evaluated in two states:
unprimed conditions in the �rst (or old) state, primed
conditions in the second (or new) state.

Ordering the Entities. To compute the value of an
entity in the new state, the transform function may
use the values of entities in both the old state and the
new state. To describe the entities needed in the new
state, we associate with each entity r a subset of RF
called the new state dependencies set. Given entities
r and r̂ in RF , we say that r depends directly on r̂ if
r̂ is in r's new state dependencies set. The \depends
directly on" relation imposes a partial ordering on the
set RF . Thus, the entities in RF can be ordered as a
sequence R, where for all i and j such that ri and rj
belong to R, ri depends directly on rj implies that ri
follows rj in R (that is, i > j).

Table Functions. Each SCR table describes a table
function, called Fi, for some entity ri. Table func-
tions de�ne the values of the output variables, terms,
and mode classes in SCR requirements speci�cations.
Each entity de�ned by a table is associated with ex-
actly one mode class, Mj , 1 � j � N . To represent
the relation between an entity and a mode class, we
de�ne a function �, where �(i) = j i� entity ri is asso-
ciated with mode class Mj . Using this notation,M�(i)

denotes the mode class associated with entity ri.
Presented below for condition, event, and mode

transition tables is a typical format, a representation
of the information in each table as a relation �i, and a
set of properties which guarantee that �i is a function.
Given �i, we can derive the table function Fi.

Condition Tables. Table 4 shows a typical format
for a condition table with n+1 rows and p+1 columns.
Each condition table describes an output variable or
term ri as a relation �i between modes, conditions, and
values, i.e., �i = f(mj ; cj;k; vk) 2M�(i)�Ci�TY(ri)g;
where Ci is a set of conditions de�ned on entities in
RF. �i has the following four properties:

1. The mj and the vk are unique.

2. [n
j=1mj =M�(i) (All modes are included).

3. For all j: _p

k=1cj;k = true (Coverage: The disjunction

of the conditions in each row of the table is true).

4. For all j; k; l; k 6= l: cj;k ^ cj;l = false (Disjointness:
The conjunction of the conditions in each row of the

table is false).

4

Modes Conditions

m1 c1;1 c1;2 : : : c1;p

m2 c2;1 c2;2 : : : c2;p
: : : : : : : : : : : : : : :

mn cn;1 cn;2 : : : cn;p

ri v1 v2 : : : vp

Table 4: Condition Table|Typical Format.

Modes Events

m1 e1;1 e1;2 : : : e1;p

m2 e2;1 e2;2 : : : e2;p

: : : : : : : : : : : : : : :

mn en;1 en;2 : : : en;p

ri v1 v2 : : : vp

Table 5: Event Table|Typical Format.

These properties guarantee that �i is a function.
To make explicit entity ri's dependencies on other

entities, we consider an alternate form Fi of the func-
tion �i. To de�ne Fi, we require the new state depen-
dencies set, Dn

i = fyi;1; yi;2; : : : ; yi;nig, where yi;1 is
the entity name for the associated mode class. Based
on Dn

i and �i, we de�ne Fi as

Fi(yi;1; : : : ; yi;n
i
) =

8>><
>>:

v1 if _n
j=1 (yi;1=mj ^ cj;1)

v2 if _n
j=1 (yi;1=mj ^ cj;2)

...
vp if _n

j=1 (yi;1=mj ^ cj;p):

The function Fi is called a condition table function.
The four properties guarantee that Fi is total.

Event Tables. Table 5 illustrates a typical format for
an event table with n+1 rows and p+1 columns. Each
event table describes an output variable or term ri as
a relation �i between modes, conditioned events, and
values, i.e., �i = f(mj ; ej;k; vk) 2M�(i)�Ei�TY(ri)g;
where Ei is a set of conditioned events de�ned on en-
tities in RF. �i has the following two properties:

1. The mj and the vk are unique.

2. For all j; k; l; k 6= l: ej;k ^ ej;l = false (Determinism:

The conjunction of the conditioned events in each row

of the table is false).

These properties and assumptions on input events
guarantee that �i is a function.

As with condition tables, we make explicit ri's de-
pendency on other entities by de�ning an alternate
form Fi of the function �i. To de�ne Fi, we re-
quire both the new state dependencies set Dn

i and an
old state dependencies set Do

i = fxi;1; xi;2; : : : ; xi;mi
g,

where Do
i � RF contains the entities needed in the

old state to compute ri and xi;1 is the entity name for
the associated mode class. Based on Do

i , D
n
i , and �i,

Fi is de�ned by

Old Mode Event New Mode

m1 e1;1 m1;1

e1;2 m1;2

: : : : : :

e1;k1 m1;k1

: : : : : : : : :

mn en;1 mn;1

en;2 mn;2

: : : : : :

en;kn mn;kn

Table 6: Mode Transition Table|Typical Format.

Fi(xi;1; : : : ; xi;m
i
; yi;1; : : : ; yi;n

i
) =8>><

>>:
v1 if _n

j=1 (xi;1=mj ^ ej;1)

v2 if _n
j=1 (xi;1=mj ^ ej;2)

...
vp if _n

j=1 (xi;1=mj ^ ej;p):

The function Fi is called an event table function.

Mode Transition Tables. Table 6 shows a typical
format for a mode transition table. A mode transi-
tion table describes an entity ri that names a mode
class M�(i). The table describes ri as a relation �i
between modes, conditioned events, and modes, i.e.,
�i = f(mj ; ej;k;mj;k) 2 M�(i) � Ei �M�(i)g; where
Ei is a set of conditioned events de�ned on entities in
RF. �i has the following four properties:

1. The mj are unique.

2. For all k 6= k0, mj;k 6= mj;k0 , and for all j and for all

k, mj 6= mj;k.

3. For all j; k; k0; k 6= k0: ej;k ^ ej;k0 = false (Determin-

ism: The conjunction of the conditioned events in

each row of the table is false).

4. For all m 2M�(i), there exists j such that mj =m or
there exist j and k such thatmj;k =m (Each mode in

the mode class is in either �i's domain or its image).

These properties and assumptions on input events
guarantee that �i is a function. It is easy to show
that a mode transition table with the format shown
in Table 6 can be expressed in the format shown for
an event table. Hence, a mode transition table can be
expressed as an event table function Fi.

Example. To illustrate the formal model, we con-
sider the condition table shown in Table 3 for the con-
trolled variable Safety Injection. The new state
dependencies set for Safety Injection is Dn

i =
fPressure, Overriddeng, where i is the index of
Safety Injection in the sequence R. Because it de-
pends directly on Pressure and Overridden, Safety
Injection follows them in R. The condition table
function Fi for Safety Injection is de�ned by

Fi(Pressure; Overridden) =(
Off if Pressure= High _ Pressure= Permitted _

(Pressure= TooLow ^ Overridden= true)
On if Pressure= TooLow ^ Overridden= false

5

4 Automated Consistency Checking

Listed below are examples of consistency checks de-
rived from our requirements model.

� Proper Syntax. Each component of the spec-
i�cation has proper syntax. For example, each
condition and event is well-de�ned.

� Type Correctness. All type de�nitions are sat-
is�ed, each entity is assigned a type, and all types
are de�ned.

� Completeness. The value of each output vari-
able, term, and mode class is de�ned. (Most
variables will be de�ned by tables, but standard
mathematical de�nitions may be given for some
output variables and terms.)

� Reachability. No mode is unreachable.

� Initial values. Initial values are de�ned for all
mode classes and input variables and for all terms
and output variables not de�ned by condition ta-
bles. (Initial values are not required for entities
de�ned by condition tables, since they can be de-
rived from the tables.)

� Consistency. Each condition table, event table,
and mode transition table satis�es the appropri-
ate properties in Section 3.

� Lack of Circularity. There are no circular de-
pendencies.

Clearly, some checks must precede others. For exam-
ple, checks for proper syntax must precede type check-
ing, and type checking should precede checking that a
total function is indeed total.

Examples. Checking the consistency of Table 7, a
modi�cation of the condition table in Table 3, reveals
four errors. The second row violates both Coverage
(Overridden _ Overridden 6= true) and Disjointness
(Overridden ^ Overridden 6= false). The third row
has two type errors: Safety Injection has the values
Off and On, not False and True.

Determinism, the second property required of
event tables, is violated if events in two di�er-
ent columns, say e and e0, overlap, i.e., e ^ e0 6=
false. To check the second row of Table 8 (a
variation of the event table in Table 2) for De-
terminism, the expression, [@T(Block=On) WHEN
Reset=Off] ^ [@T(Block=On) _ @T(Reset=On)],
is evaluated. This expression can be rewrit-
ten as a disjunction, [@T(Block=On) WHEN
Reset=Off ^ @T(Block=On)] _ [@T(Block=On)
WHEN Reset=Off ^ @T(Reset=On)]. Applying the
de�nition of event evaluation in Section 3 to the
�rst clause of the disjunction, we have [Block0 =On
^ Block=Off ^ Reset=Off] ^ [Block0 =On ^
Block=Off]. This implies Block0 =On ^ Block=Off
^ Reset=Off. Because this expression does not equal
false, the speci�ed behavior is nondeterministic. Thus,
if in TooLow or Permitted mode the operator turns
Block on when Reset is o�, the system may nonde-
terministically change Overridden to true or to false.

Mode Conditions

High or Permitted True False

TooLow Overridden Overridden

Safety Injection False True

Table 7: Modi�ed Table for Safety Injection.

Mode Events

High False @T(Inmode)

TooLow or @T(Block=On) @T(Block=On) OR
Permitted WHEN Reset=Off @T(Reset=On)

Overridden True False

Table 8: Modi�ed Table for Overridden.

Some checks, such as syntax and type checking,
are easy. More complex are checks that evaluate
expressions containing \Inmode", depend on non-
local de�nitions (other than type information), or
require deductive reasoning. Consider, for exam-
ple, checking the mode table in Table 1 for non-
determinism. Nondeterminism can occur only if
events in the second and third rows overlap, i.e.,
if @T(WaterPres�Permit) ^ @T(WaterPres<Low)
is true. This implies WaterPres0 � Permit ^
WaterPres 6� Permit ^ WaterPres0 < Low ^
WaterPres 6< Low. By assumptions on the constants,
Permit > Low. This and WaterPres0 � Permit im-
ply WaterPres0 � Low. Hence, the expression is false
and the de�ned behavior deterministic. Because in
general mechanical evaluation of such expressions is
hard, the tool may need some feedback from the user
to complete certain checks.

Prototype Consistency Checker. A prototype
consistency checker that performs most of the above
checks has been implemented. It is coded in C++
and runs on X-Windows with Motif widgets to sup-
port its user interface. In a typical session with the
consistency checker, the user edits a speci�cation and
then runs the consistency checker to test for selected
properties. The tool runs the selected checks, listing
errors that it �nds. The user may select one of the
listed errors. In response, the tool displays the part of
the speci�cation that contains the error, so that the
user can make needed corrections.

5 Applying Consistency Checks

To evaluate the utility of checking requirements
speci�cations for consistency, we conducted two ex-
periments. In the experiments, we used early versions
of the consistency checker to analyze tables in a revi-
sion [1] of the software requirements document for the
A-7's Operational Flight Program (OFP). The new
document corrects errors in the original [13] and uses
Faulk's tabular format to specify mode transitions [6].

In the �rst experiment, our tool tested all 36 condi-
tion tables in [1], a total of 98 rows, for Coverage and
Disjointness. The tool found 19 errors. Seventeen of
these, distributed over 11 tables, proved to be legiti-

6

Error No. Explanation

Slewing 9 Behavior for 3rd value of variable
Variable Slewing is missing.

GRTest 4 Some tables do not specify be-
havior for all GRTest submodes.

Steering 3 Early document used 3 values to
Phase describe steering phases. Revised

document uses 4 values, but some
tables have not been updated.

Application- 1 (OTS _ Range to RMax < 0) and
Speci�c NOT (range to target � 10 mi.)

do not cover the domain.

Table 9: Errors in the A-7 condition tables.

mate errors. (Classifying the remaining two as correct
required information about the speci�cation that our
simple tool lacked.) Table 9 describes the detected
errors. Interestingly, all are Coverage errors.

In a second experiment, our tool checked all mode
transition tables in [1] for nondeterminism. The A-7
speci�cation contains three mode classes with a to-
tal of 46 di�erent modes (18 modes in the �rst mode
class, 7 modes in the second, and 21 modes in the
third). The tool checked 688 rows and found 33 non-
deterministic transitions. Although many of these are
undoubtedly errors, a few probably are not, since some
detected events may be impossible. (Recall that some
events cannot occur when certain conditions are true.)
Reference [11] contains examples of nondeterminism
our tool detected in the transition table for the OFP's
Alignment, Navigation and Test mode class.

Tool-based vs. Manual Checks. Prior to pub-
lication, the revised A-7 requirements document was
carefully reviewed by two teams, one made up of NRL
computer scientists (including one of the authors), the
other composed of engineers at the Naval Air Warfare
Center who maintained the OFP. As noted above, our
tools detected many signi�cant errors that the review-
ers missed.

That errors were detected should not diminish the
credit due the reviewers, who did very well given
the large volume and complexity of the requirements
data. Tools, such as those we developed, can comple-
ment the e�orts of software developers. Human e�ort
is crucial to acquiring the requirements information
and expressing it precisely. Further, after errors are
detected in the speci�cation, human intervention is
needed to correct them. However, once the developers
have a reasonable draft of the requirements speci�ca-
tions, software tools provide a quick, e�ective means of
checking the speci�cation for properties, such as those
listed in Section 4. Not only are tools more e�ec-
tive than people for checking these properties; in ad-
dition, they can reduce signi�cantly a labor-intensive
task that humans �nd tedious and boring.

Another important feature of our tool is its low cost.
In the Darlington certi�cation e�ort, which cost over
$40M, reviewers checked the requirements speci�ca-
tions for application-independent properties, such as
Disjointness and Coverage. In addition, they searched
for discrepancies between the requirements speci�ca-
tions and the code speci�cations (the third class of

analysis described in the introduction). A tool that
compares the speci�cations with a re�nement will be
more complex than our consistency checker. However,
this does not diminish the value of our tool. Parnas
has observed that the \majority of the theorems that
arose in the documentation and inspection of the Dar-
lington Nuclear Plant Shutdown Systems" were simple
properties and that the reviewers analyzed trivial ta-
bles for such properties in documents weighing 40 kg.
[18]. Using tools to do such analyses should cost far
less than using people.

Related Work. In a related e�ort, Atlee and Gan-
non use model checking to analyze SCR requirements
speci�cations [2]. Unlike our tool, theirs evaluates
application-speci�c properties. Further, where our
consistency checker tests all tables and de�nitions in
an SCR speci�cation automatically, their tool analyzes
the mode transition tables only, extended by hand to
incorporate the needed variable de�nitions.

In other related work, Parnas describes ten small
theorems related to his tabular notation (similar to
other SCR notation) and challenges the developers of
automated proof systems to prove the theorems [18].
Two of the theorems, the Domain Coverage Theorem
and the Disjoint Domains Theorem, are slight vari-
ations of our Coverage and Disjointness properties.
SRI researchers accepted Parnas' challenge. In a re-
cent paper [20], they describe the mechanical proof of
nine of Parnas' theorems using the \tcc-strategy"(tcc's
are type-correctness conditions) of SRI's proof system
PVS [16]. That PVS can prove such theorems easily is
not too surprising, since the proofs require very simple
logic. What is noteworthy about the PVS experiment
is that the theorems were proven automatically.

A recent experiment [19] compares the e�ectiveness
of three di�erent inspection methods for detecting er-
rors in SCR requirements speci�cations. Many of the
errors of interest in the experiment can be automati-
cally detected by our consistency checker. Using a tool
like ours in conjunction with inspection would proba-
bly detect more errors than either alone.

6 Software Development Process

We envision the following process for developing re-
quirements speci�cations. First, the developer uses
the SCR notation to specify the requirements. Next,
he uses an automated consistency checker to test for
syntax and type correctness, coverage, determinism,
and other application-independent properties. The
next step is to symbolically execute the speci�cation,
using a simulator, to ensure that it captures the de-
veloper's intent; the simulator can be run either man-
ually, or automatically using an input script (see, e.g.,
[3]).

In the later stages of requirements, the developer
uses mechanical support to analyze the speci�cation
for application properties. Initially, he extracts a small
subset with �xed parameters and only a few states
from the speci�cation and uses a model checker. This
may be repeated, each time with a di�erent or larger
subset. Once he has su�cient con�dence in the speci-
�cation, the developer may use a deductive proof sys-
tem to verify safety-critical components.

7

7 Concluding Remarks

Based on our experience with automated consis-
tency checking to date, we have four conclusions:

� Tools for consistency checking can be highly e�ec-

tive for detecting errors in requirements speci�ca-

tions. Not only can such tools �nd errors people miss;
they can liberate people from the unpleasant task of

checking speci�cations for consistency.

� Properly designed tools are signi�cantly more cost-

e�ective than people for consistency checking.

� Computer-based analysis requires an explicit formal

semantics, such as that provided by our requirements
model. This semantics provides the basis for algo-

rithms that do the analysis.

� The formal methods on which our tools are based

scale up. They detected a signi�cant number of errors
in a medium-size real-world speci�cation.

Currently, we are building a more complete version
of the toolset, which includes the consistency checker,
a speci�cation editor and a simulator. We also plan
a veri�er that checks for application properties. An
option being considered is to link the toolset with a
mechanical proof system to support both automated
consistency checking and computer-assisted veri�ca-
tion. This would relieve us of the di�cult and error-
prone task of encoding the logic ourselves.

We expect our requirements model to provide a
solid foundation for a suite of analysis tools. We also
expect the process outlined above, which uses for-
mal notation to specify requirements and computer-
supported formal analysis to detect errors, to produce
high quality requirements speci�cations. Such speci-
�cations should signi�cantly reduce software develop-
ment costs.

Acknowledgments

We gratefully acknowledge the work of A. Bull, C. Gasarch,
and A. Rose on the consistency checker. R. Je�ords helped
de�ne the formal model. D. Berry gave valuable suggestions
on an earlier draft. S. Faulk provided Fig. 1 and valuable
comments that signi�cantly improved the paper's presentation

and its content.

References

[1] T. Alspaugh, S. Faulk, K. Britton, R. Parker, D. Parnas,
and J. Shore. Software requirements for the A-7E aircraft.

Technical Report NRL-9194, NRL, Wash., DC, 1992.

[2] J. Atlee and J. Gannon. State-based model checking of
event-driven system requirements. In Proc., ACM SIG-

SOFT Conf. on Software for Critical Systems, New Or-
leans, December 1991.

[3] P. Clements, C. Heitmeyer, B. Labaw, and A. Rose. MT: A
toolset for specifying and analyzing real-time systems. In
Proc., Real-Time Systems Symp., Raleigh, NC, December
1993.

[4] P.-J. Courtois and D. L. Parnas. Documentation for safety

critical software. In Proc., 15th Intern. Conf. on Software

Eng., Baltimore, 1993.

[5] D. Craigen et al. An international survey of industrial
applications of formal methods. Technical Report NRL-
9581, NRL, Wash., DC, 1993.

[6] S. Faulk. State Determination in Hard-Embedded Systems.
PhD thesis, Univ. of No. Carolina, Chapel Hill,, 1989.

[7] S. R. Faulk, J. Brackett, P. Ward, and J. Kirby. The CoRE
method for real-time requirements. IEEE Software, 9(5),
September 1992.

[8] S. R. Faulk, L. Finneran, J. Kirby, and J. Sutton. Experi-
ence applying the CoRE method to the Lockheed C-130J.
In Proc., Ninth Annual Conf. on Computer Assurance,
Gaithersburg, MD, June 1994.

[9] C. Heitmeyer and N. Lynch. The Generalized Railroad
Crossing: A case study in formal veri�cation of real-time
systems. In Proc., Real-Time Systems Symp., San Juan,
Puerto Rico, December 1994.

[10] C. L. Heitmeyer, R. D. Je�ords, and B. G. Labaw. Tools
for analyzing SCR-style requirements speci�cations: A for-

mal foundation. Technical Report NRL-7499, NRL, Wash.,
DC, 1995. In preparation.

[11] C. L. Heitmeyer and B. G. Labaw. Consistency checks for

SCR-style requirements speci�cations. Technical Report
9586, NRL, Wash DC, December 1993.

[12] C. L. Heitmeyer and J. McLean. Abstract requirements
speci�cations: A new approach and its application. IEEE

Trans. Softw. Eng., SE-9(5), September 1983.

[13] K. Heninger, D. Parnas, J. Shore, and J. Kallander. Soft-
ware requirements for the A-7E aircraft. Technical Report

3876, NRL, Wash., DC, 1978.

[14] K.L. Heninger. Specifying software requirements for com-
plex systems: New techniques and their application. IEEE
Trans. Softw. Eng., SE-6(1), January 1980.

[15] C. E. Landwehr, C. L. Heitmeyer, and J. McLean. A secu-

rity model for military message systems. ACM Trans. on

Comp. Syst., 2(3):198{222, August 1984.

[16] S. Owre, N. Shankar, and J. Rushby. User guide for the

PVS speci�cation and veri�cation system (Draft). Techni-
cal report, Computer Science Lab, SRI Intl., Menlo Park,
CA, 1993.

[17] D. Parnas and J. Madey. Functional documentation for

computer systems engineering (Version 2). Technical Re-
port CRL 237, Telecommunications Research Inst. of On-
tario (TRIO), McMaster Univ., Hamilton, Ont., 1991.

[18] D. L. Parnas. Some theorems we should prove. In Proc.,

1993 Intern. Conf. on HOL Theorem Proving and Its Ap-

plications, Vancouver, BC, August 1993.

[19] A. A. Porter and L. G. Votta. An experiment to assess dif-

ferent defect detection methods for software requirements
inspections. InProc., 16th Intern. Conf. on Software Eng.,
1994.

[20] J. Rushby and M. Srivas. Using PVS to prove some the-
orems of David Parnas. In Proc., 1993 Intern. Conf. on

HOL Theorem Proving and Its Applications, Vancouver,

BC, August 1993.

[21] A. J. van Schouwen. The A-7 requirements model: Re-
examination for real-time systems and an application for
monitoring systems. Technical Report TR 90-276, Queen's
Univ., Kingston, Ont., 1990.

[22] A. J. van Schouwen, D. L. Parnas, and J. Madey. Docu-
mentation of requirements for computer systems. In Proc.,

RE'93 Requirements Symp., San Diego, January 1993.

8

